

Certificate of Analysis FOR COMPLIANCE

Naturae LLC License # : OCM-AUCP-2022-000028 4883 State Route 67 Hoosick Falls, NY, 12090, US

SAFETY RESULTS

ц С	Hg	Ę	÷ F	٠Ç,	ć	Ä)	\bigcirc	6		Ô
Pesticides PASSED	Heavy Metal PASSED	s Micro PAS		Mycotoxins PASSED	So	siduals lvents SSED	Filth NOT TES		Vater Activity		sture ESTED	Terpenes TESTED
<u>ل</u> دُّ Ca	annabinoid	I									Ρ	ASSE
	Total THC 70.95 Total THC/Contai	/ /	ing	CT T		BD 100 D/Container :		A LAND	7		996%	/0 ner : 381.498
									mg			
									mg			
D10 % <(mg/unit <(AR,9R) 10-THC 0.1000 0.500 1000 0.10000 0.10000 0.10000 0.100000 0.100000 0.10000 0.10000	свс 0.8528 4.264 0.1000 %	CBD <0.1000 <0.500 0.1000 %	CBDA <0.1000 <0.500 0.1000 %	CBDV <0.1000 <0.500 0.1000 %	свб 3.3615 16.808 0.1000 %	CBGA 0.2712 1.356 0.1000 %	CBN 0.2974 1.487 0.1000 %	транис Ваннс «0.1000 «0.500 0.1000 %	D9-ТНС 70.7855 353.928 0.1000 %	THCA 0.1891 0.946 0.1000 %	тнсv 0.5421 2.711 0.1000 %

Kaycha Labs

RZRC24159B Lemosa Matrix: Derivative Type: Vape Cartridge

Matrix: Derivative Type: Vape Cartridge Sample:AL40607007-002 Harvest/Lot ID: RZRC24159B Batch#: RZRC24159B Seed to Sale# RZRC24159B

Seed to Sale# RZRC24159B Sample Size Received: 16 units Total Amount: 2189 units Retail Product Size: 0.5 gram Retail Serving Size: 0.1 gram Servings: 5 Sampled: 06/06/24 07:20 PM Sampling Start: 07:20 PM Sampling End: 07:40 PM Sampling Method: SOP.T.20.010.NY

PASSED

MICC

Pages 1 of 5

1

Lab Director NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Erica Troy

Signature 06/21/24

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

1 Winners Circle Albany, NY, 12205, US Kaycha Labs

..... RZRC24159B Lemosa Matrix : Derivative Type: Vape Cartridge

Certificate of Analysis

PASSED

Naturae LLC

 $\widehat{}$

(833) 465-8378

4883 State Route 67 Hoosick Falls, NY, 12090, US **Telephone:** (518) 730-6024 Email: maxson@naturaenewvork.com License # : OCM-AUCP-2022-000028 Sample : AL40607007-002 Harvest/Lot ID: RZRC24159B Batch# : RZRC24159B Sampled : 06/06/24 07:20 PM Total Amount : 2189 units

Sample Size Received : 16 units Sampling Method : SOP.T.20.010.NY

Page 2 of 5

O Terp	enes									TESTED
Terpenes	LOQ (%)	mg/uni	it %	Result (%)		Terpenes	LOQ (%)	mg/unit	%	Result (%)
BETA-CARYOPHYLLENE	0.04	13.1	2.6			Weight: 0.8006g				
BETA-MYRCENE	0.10	6.8	1.4			Analysis Method : SOP.T.30.064.NY, SOP.T.40.064.NY				
LIMONENE	0.10	6.3	1.3			Analyzed Date : 06/10/24 10:51:38				
ALPHA-BISABOLOL	0.04	4.9	0.97							
ALPHA-HUMULENE	0.04	4.3	0.85							
ALPHA-PINENE	0.10	2.5	0.50							
BETA-PINENE	0.10	1.7	0.34							
GUAIOL	0.04	1.3	0.25							
CARYOPHYLLENE OXIDE	0.04	0.7	0.14		1					
INALOOL	0.10	0.6	0.11							
FENCHYL ALCOHOL	0.04	0.5	0.09							
ALPHA TERPINEOL	0.04	0.4	0.08							
GERANIOL	0.04	0.3	0.05			1				
CAMPHENE	0.10	<0.5	< 0.10			1				
ARNESENE	0.10	< 0.5	< 0.10							
DCIMENE	0.10	<0.5	<0.10							
TERPINOLENE	0.04	<0.2	< 0.04							
ALENCENE	0.10	<0.5	<0.10							
MENTHOL	0.10	<0.5	<0.10							
ALPHA-PHELLANDRENE	0.10	<0.5	<0.10							
ALPHA-TERPINENE	0.10	<0.5	<0.10			i				
otal (%)			8.6							

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 06/21/24

Certificate of Analysis

Sample : AL40607007-002 Harvest/Lot ID: RZRC24159B

Sampled : 06/06/24 07:20 PM Total Amount : 2189 units

Batch# : RZRC24159B

Naturae LLC

R÷

0

4883 State Route 67 Hoosick Falls, NY, 12090, US **Telephone:** (518) 730-6024 Fmail: maxson@naturaenewvork.com License # : OCM-AUCP-2022-000028

Pesticides

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<0.1
AZADIRACHTIN	0.1	ppm	1	PASS	<0.1
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	< 0.1
MYCLOBUTANIL	0.1	ppm	0.2	PASS	< 0.1
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	< 0.1
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<0.1
ACEPHATE	0.1	ppm	0.4	PASS	< 0.1
ACEQUINOCYL	0.1	ppm	2	PASS	< 0.1
ACETAMIPRID	0.1	ppm	0.2	PASS	<0.1
ALDICARB	0.1	ppm	0.4	PASS	< 0.1
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<0.1
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	< 0.1
BIFENAZATE	0.1	ppm	0.2	PASS	< 0.1
BIFENTHRIN	0.1	ppm	0.2	PASS	< 0.1
CARBARYL	0.1	ppm	0.2	PASS	< 0.1
COUMAPHOS	0.1	ppm	1	PASS	< 0.1
CHLORPYRIFOS	0.1	ppm	0.2	PASS	< 0.1
DAMINOZIDE	0.1	ppm	1	PASS	< 0.1
BOSCALID	0.1	ppm	0.4	PASS	< 0.1
CARBOFURAN	0.1	ppm	0.2	PASS	< 0.1
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	< 0.1
CLOFENTEZINE	0.1	ppm	0.2	PASS	< 0.1
DIAZINON	0.1	ppm	0.2	PASS	< 0.1
DICHLORVOS	0.1	ppm	1	PASS	< 0.1
DIMETHOATE	0.1	ppm	0.2	PASS	< 0.1
DIMETHOMORPH	0.1	ppm	1	PASS	< 0.1
ETHOPROPHOS	0.1	ppm	0.2	PASS	<0.1
ETOFENPROX	0.1	ppm	0.4	PASS	< 0.1
ETOXAZOLE	0.1	ppm	0.2	PASS	< 0.1
FENHEXAMID	0.1	ppm	1	PASS	< 0.1
FENOXYCARB	0.1	ppm	0.2	PASS	<0.1
FENPYROXIMATE	0.1	ppm	0.4	PASS	< 0.1
FIPRONIL	0.1	ppm	0.4	PASS	< 0.1
FLONICAMID	0.1	ppm	1	PASS	< 0.1
FLUDIOXONIL	0.1	ppm	0.4	PASS	< 0.1
HEXYTHIAZOX	0.1	ppm	1	PASS	< 0.1
IMAZALIL	0.1	ppm	0.2	PASS	<0.1
IMIDACLOPRID	0.1	ppm	0.4	PASS	< 0.1
KRESOXIM METHYL	0.1	ppm	0.4	PASS	< 0.1
MALATHION	0.1	ppm	0.2	PASS	< 0.1
METALAXYL	0.1	ppm	0.2	PASS	<0.1
METHIOCARB	0.1	ppm	0.2	PASS	< 0.1
METHOMYL	0.1	ppm	0.4	PASS	< 0.1
MEVINPHOS	0.1	ppm	1	PASS	< 0.1
NALED	0.1	ppm	0.5	PASS	< 0.1
OXAMYL	0.1	ppm	1	PASS	< 0.1

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<0.1
PERMETHRIN	0.1	ppm	0.2	PASS	<0.1
PHOSMET	0.1	ppm	0.2	PASS	<0.1
PRALLETHRIN	0.1	ppm	0.2	PASS	<0.1
PROPICONAZOLE	0.1	ppm	0.4	PASS	<0.1
PROPOXUR	0.1	ppm	0.2	PASS	<0.1
PYRIDABEN	0.1	ppm	0.2	PASS	<0.1
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<0.1
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<0.1
SPIROMESIFEN	0.1	ppm	0.2	PASS	<0.1
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<0.1
SPIROXAMINE	0.1	ppm	0.2	PASS	<0.1
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<0.1
THIACLOPRID	0.1	ppm	0.2	PASS	<0.1
THIAMETHOXAM	0.1	ppm	0.2	PASS	<0.1
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<0.1
CAPTAN *	0.1	ppm	1	PASS	<0.1
CHLORDANE *	0.1	ppm	1	PASS	<0.1
CHLORFENAPYR *	0.1	ppm	1	PASS	<0.1
CYFLUTHRIN *	0.1	ppm	1	PASS	<0.1
CYPERMETHRIN *	0.1	ppm	1	PASS	<0.1
METHYL PARATHION *	0.1	ppm	0.2	PASS	<0.1
MGK-264 *	0.1	ppm	0.2	PASS	<0.1
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<0.1
Weight:					

Weight: 0.4591g

Sample Size Received : 16 units

Sampling Method : SOP.T.20.010.NY

Analysis Method :SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date :06/10/24 12:03:05

Weight: 0.4591g

Analysis Method :SOP.T.40.154.NY Analyzed Date :06/10/24 12:06:24

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Ent

Signature 06/21/24

Kaycha Labs

..... RZRC24159B Lemosa Matrix : Derivative Type: Vape Cartridge

PASSED

PASSED

Page 3 of 5

Certificate of Analysis

Naturae LLC

4883 State Route 67 Hoosick Falls, NY, 12090, US **Telephone:** (518) 730-6024 Fmail: maxson@naturaenewvork.com License # : OCM-AUCP-2022-000028

Sample : AL40607007-002 Harvest/Lot ID: RZRC24159B Batch# : RZRC24159B Sampled : 06/06/24 07:20 PM Total Amount : 2189 units

Sample Size Received : 16 units Sampling Method : SOP.T.20.010.NY

Page 4 of 5

Residual Solvents

Solvents	LOQ	Units	Action Level	Pass/Fail	Result
DIMETHYL SULFOXIDE	750.0	ppm	5000	PASS	<750.0
L,1,1-TRICHLOROETHANE	225.0	ppm	1500	PASS	<225.0
IEXANE, TOTAL	125.0	ppm	290	PASS	<125.0
PENTANES, TOTAL	125.0	ppm	5000	PASS	<125.0
UTANES, TOTAL	900.0	ppm	5000	PASS	<900.0
YLENES, TOTAL	250.0	ppm	2170	PASS	<250.0
,2-DICHLOROETHANE	0.5	ppm	5	PASS	<0.5
ROPANE	900.0	ppm	5000	PASS	<900.0
IETHANOL	125.0	ppm	3000	PASS	<125.0
THANOL	125.0	ppm	5000	PASS	132.2
THYL ETHER	125.0	ppm	5000	PASS	<125.0
CETONE	125.0	ppm	5000	PASS	<125.0
-PROPANOL	125.0	ppm	5000	PASS	<125.0
CETONITRILE	125.0	ppm	410	PASS	<125.0
DICHLOROMETHANE	125.0	ppm	600	PASS	<125.0
THYL ACETATE	125.0	ppm	5000	PASS	<125.0
ENZENE	0.5	ppm	2	PASS	<0.5
I-HEPTANE	125.0	ppm	5000	PASS	<125.0
OLUENE	125.0	ppm	890	PASS	<125.0
CHLOROFORM	0.5	ppm	60	PASS	< 0.5

Analysis Method : SOP.T.40.044.NY Analyzed Date : 06/13/24 16:47:35

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 06/21/24

Kaycha Labs

..... RZRC24159B Lemosa Matrix : Derivative Type: Vape Cartridge

PASSED

PASSED

Certificate of Analysis

Sample : AL40607007-002

Batch# : RZRC24159B

Naturae LLC

AT AT

4883 State Route 67 Hoosick Falls, NY, 12090, US **Telephone:** (518) 730-6024 Email: maxson@naturaenewvork.com License # : OCM-AUCP-2022-000028

Analyzed Date : 06/08/24 11:44:48

.

Harvest/Lot ID: RZRC24159B Sample Size Received : 16 units Sampled : 06/06/24 07:20 PM Total Amount : 2189 units Sampling Method : SOP.T.20.010.NY

320

. RZRC24159B Lemosa Matrix : Derivative Type: Vape Cartridge

Kaycha Labs

PASSED

Page 5 of 5

1 St	Microbial						
Analyte		LOQ	Units	Result	Pass / Fail	Action Level	
TOTAL AERO	BIC BACTERIA	100	CFU/g	<100	PASS	10000	
TOTAL YEAST AND MOLD		100	CFU/g	<100	PASS	1000	
ESCHERICHI/	A COLI SHIGELLA			Not Present	PASS		
SALMONELL	A SPECIES			Not Present	PASS		
ASPERGILLU	S TERREUS			Not Present	PASS		
ASPERGILLU	S NIGER			Not Present	PASS		
ASPERGILLU	S FLAVUS			Not Present	PASS		
ASPERGILLU	S FUMIGATUS			Not Present	PASS		
Weight: 0.5g							
Analysis Metho	d:SOP.T.40.058A.NY	, SOP.T.40.	058B.NY, S	OP.T.40.208.NY			

တို့စ	Mycotoxin	PASSED				
Analyte		LOQ	Units	Result	Pass / Fail	Action Level
AFLATOXIN O	52	0.003	ppm	<0.003	PASS	0.02
AFLATOXIN C	G1	0.003	ppm	<0.003	PASS	0.02
AFLATOXIN E	32	0.003	ppm	<0.003	PASS	0.02
AFLATOXIN E	31	0.003	ppm	<0.003	PASS	0.02
OCHRATOXIN	I A+	0.010	ppm	<0.010	PASS	0.02
TOTAL AFLAT	TOXINS (B1, B2, G1, G2)	0.003	ppm	<0.003	PASS	0.02
Weight: 0.4591g						

Analysis Method : SOP.T.30.104.NY, SOP.T.40.104.NY Analyzed Date : 06/10/24 12:08:35

Hg	Heavy M	PASSED				
Metal		LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY		0.1000	ug/g	<0.1000	PASS	2
ARSENIC		0.1000	ug/g	<0.1000	PASS	0.2
CADMIUM		0.1000	ug/g	<0.1000	PASS	0.3
CHROMIUM		1.0000	ug/g	<1.0000	PASS	110
COPPER		1.0000	ug/g	<1.0000	PASS	30
LEAD		0.1000	ug/g	<0.1000	PASS	0.5
MERCURY		0.0100	ug/g	<0.0100	PASS	0.1
NICKEL		0.1000	ug/g	<0.1000	PASS	2
Weight: 0.4208g						

Analysis Method : SOP.T.30.084.NY, SOP.T.40.084.NY Analyzed Date : 06/10/24 10:54:13

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 06/21/24